If it's not what You are looking for type in the equation solver your own equation and let us solve it.
17x^2+6x-25=0
a = 17; b = 6; c = -25;
Δ = b2-4ac
Δ = 62-4·17·(-25)
Δ = 1736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1736}=\sqrt{4*434}=\sqrt{4}*\sqrt{434}=2\sqrt{434}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{434}}{2*17}=\frac{-6-2\sqrt{434}}{34} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{434}}{2*17}=\frac{-6+2\sqrt{434}}{34} $
| 6(3a-2)+51=57 | | 4x-117=191+15x | | 4s(4)=64 | | -4/1=-4x1/24 | | -13-70=-8x+115 | | (7×4)÷x=14 | | -4(x-4)=6(x+5) | | 5x-241=14x+83 | | 5x+8=1/3(15x+9) | | (7×4÷x=14 | | -108+9x=84-2x | | 3/4g=21 | | -3x-59=137-10x | | 4x-3-2x-7+x=180 | | -12+5m+4=6m-11-10m | | 45+45=4x+18=180 | | -x-71=109-13x | | 15x-220=-4x+103 | | -123=7n+3 | | X=-3x-6 | | 7x^2+42x-360=0 | | 15x220=-4x+103 | | 5(x-1)-2(x+6)=2x+12 | | 7x(-4)=5Y | | x^2+5x/18=84 | | 5x=1+7x-11 | | -131+6x=15x76 | | 3x+2=x−2 | | -49+15x=43+11x | | -98=7(n-6) | | 2/3x-3=x/4+1/3 | | 3x-31=5x+15 |